

XXIX Encontro de Jovens Pesquisadores e XI Mostra Acadêmica de Inovação e Tecnologia

De 5 a 7/10 Local: UCS - Cidade Universitária, Caxias do Sul

NANOTECNOLOGIA COMO FERRAMENTA PARA MELHORAR A BIODISPONIBILIDADE DE COMPOSTOS FENÓLICOS

VOLUNTÁRIO

NANOFITO

Larissa Ferrari Erlo, Políbio Leão, Carina Cassini, Valéria Weiss Angeli, Mirian Salvador, Cátia dos Santos Branco

INTRODUÇÃO / OBJETIVO

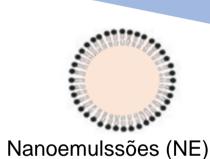
Compostos fenólicos (CF)

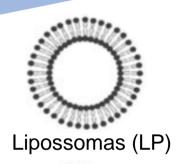
Metabólitos secundários de extratos vegetais

Propriedades bioativas reconhecidas

Prevenção/tratamento de muitas doenças

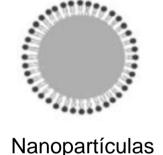
POLIMÉRICOS




Nanoesféras

Nanotecnologia

- ✓ Protege ativos
- ✓ Permite liberação controlada
- √ Estabiliza substâncias


NANOCARREADORES BIODEGRADÁVEIS

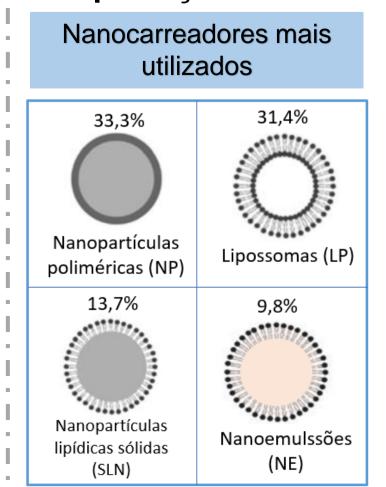
Carreadores lipídicos

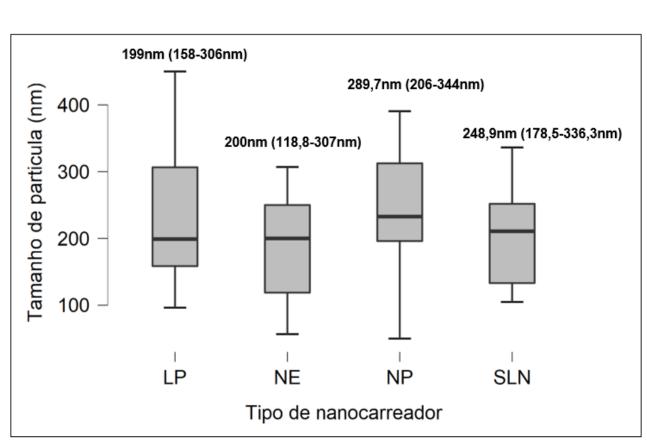
20

10

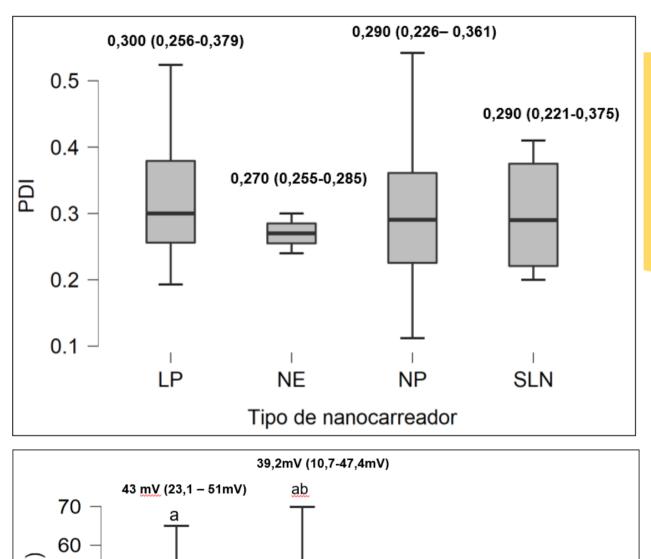
nanoestruturados (NLC) lipídicas sólidas (SLN)

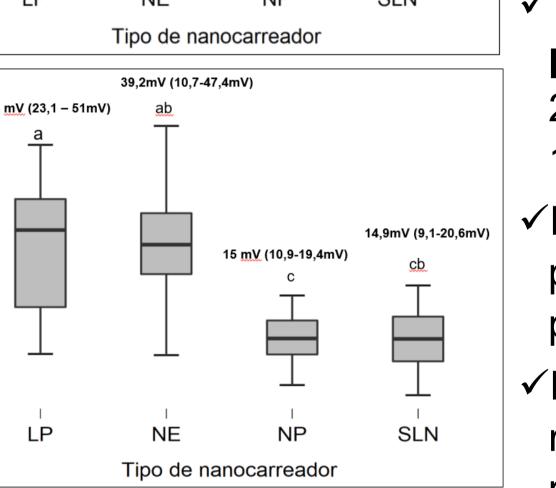
A nanoencapsulação desses extratos tem como objetivo aumentar a eficácia dos CF. Dessa forma, o objetivo do presente trabalho foi revisar na literatura os principais tipos de nanocarreadores utilizados para extratos vegetais.

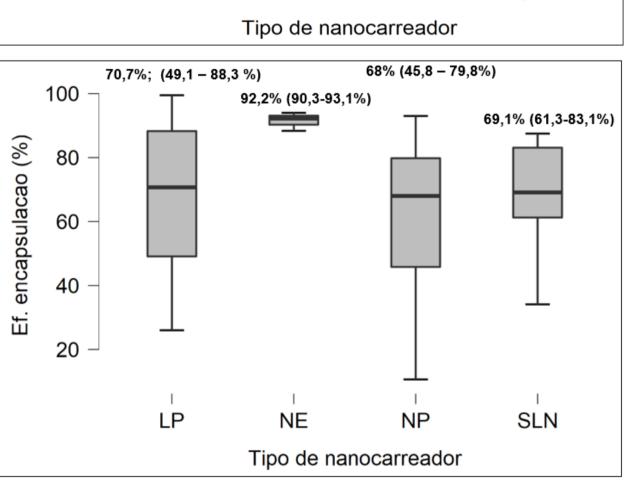

LIPÍDICOS


EXPERIMENTAL

Utilizou-se a base de dados Pubmed e as palavras-chaves 'phenolic compounds (extract) and nanocarriers plus liposomes plus nanoemulsions plus SLN", com o filtro "últimos 5 anos". Dos 143 artigos, foram incluídos 43 estudos originais que associaram extratos vegetais contendo CF a nanoestruturas. Os resultados foram analisados por ANOVA e pós-teste de Bonferroni, com nível de significância 5% através do programa JASP versão 0.14.1.


RESULTADOS E DISCUSSÃO


Dentre os estudos, os nanocarreadores mais utilizados foram NP, LP, SLN e NE. Em relação aos parâmetros avaliados, houve diferença nos tamanhos de partículas, potencial zeta, PDI e eficiência de encapsulação.



RESULTADOS E DISCUSSÃO

Mediana (intervalo interquartil inferior e superior) respectivamente:

- ✓ Tamanho de partícula foi de 289,7nm para LP e 199nm para SLN
- **✓ PDI** foi de 0,300 para NP e 0,270 para NE
- ✓ Potencial zeta em módulo foi de 43mV! para NP e 14,9mV para SLN
- ✓ Eficiência de encapsulação de CF 92,2% para NE e 68% para NP

CONCLUSÕES

Conclui-se que LP, NP, SLN e NE apresentam características adequadas para serem utilizados como nanocarreadores de extratos vegetais contendo CF.

REFERÊNCIAS BIBLIOGRÁFICAS

Branco, C.S., Duong, A., Machado, A.K. et al. Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells. Mol Biol Rep 46, 6013–6025 (2019). https://doi.org/10.1007/s11033-019-05037-6

Ferreira et al. (2017) Phenolic Compounds and Its Bioavailability: In Vitro Bioactive Compounds or Health Promoters? Advances in Food and Nutrition Research, Volume 82.

l Pissinate K, dos Santos Martins-Duarte É, Schaffazick SR, de Oliveira CP, Vommaro I RC, Guterres SS, Pohlmann AR, de Souza W. Pyrimethamine-loaded lipid-core nanocapsules to improve drug efficacy for the treatment of toxoplasmosis. Parasitol Res. 2014 Feb;113(2):555-64. doi: 10.1007/s00436-013-3715-6.

